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1. Background
1.1 Logical query examples

1.2 Motivations and challenges for neuro-symbolic approach
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Background: Logical query examples

Logical query in 
natural language

Logical query in 
formal language

What are the treatments for 
disease “𝑑4”?

𝑦. 𝑟2(𝑑4, 𝑦)

What are the treatments for 
syndrome “𝑠1”?

𝑦. ∃𝑥. 𝑟1 𝑠1, 𝑥 ∧ 𝑟2(𝑥, 𝑦)

What are the common 
syndromes of diseases “𝑑1” 

and “𝑑4”?
𝑦. 𝑟1 𝑦, 𝑑1 ∧ 𝑟1(𝑦, 𝑑4)

What are the treatment for 
“𝑑1” but NOT “𝑑4”

𝑦. 𝑟2 𝑑1, 𝑦 ∧ ¬𝑟2(𝑑4, 𝑦)

What are the syndromes for 
diseases “𝑑1” or “𝑑2”

𝑦. 𝑟1 𝑦, 𝑑1 ∨ 𝑟1(𝑦, 𝑑2)
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DiseaseSyndrome Treatment

A simplified medical KG.
A more recent and complex one:

https://www.nature.com/articles/s41597-023-01960-3
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Background: Logical query examples

Logical query in 
natural language

Logical query in 
formal language

What is the treatment 
for disease “𝑑4”?

𝑦. 𝑟2(𝑑4, 𝑦)
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Traversal on the knowledge graph
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𝑑4 𝑦
𝑟2

A query graph representation of
One-hop query / Link prediction

𝑑2

Nodes in a query graph: entities and variables
Edges in a query graph: the logical predicate (with negation)
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Background: Logical query examples

Logical query in 
natural language

Logical query in 
formal language

What are the 
treatments for 

syndrome “𝑠1”?
𝑦. ∃𝑥. 𝑟1 𝑠1, 𝑥 ∧ 𝑟2(𝑉1, 𝑥)
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𝑠4

𝑠3

𝑑4

𝑑3

𝑡1
𝑟1

𝑟2

𝑠1 𝑑1

𝑑2 𝑡2

𝑡4

A query graph representation for
multi-hop query / path query

𝑥 𝑦
𝑟2

𝑠1
𝑟1

Traversal on the knowledge graphNodes in a query graph: entities and variables
Edges in a query graph: the logical predicate (with negation)

Missing edge

𝑡3
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Background: Logical query examples

Logical query in 
natural language

Logical query in 
formal language

What is the common 
syndrome of diseases 

“𝑑1” and “𝑑4”?
𝑦. 𝑟1 𝑦, 𝑑1 ∧ 𝑟1(𝑦, 𝑑4)
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𝑠1

𝑠4

𝑠3 𝑑3
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𝑟2

𝑑2

A query graph representation for
multi-constraint query

𝑦𝑑1

𝑑1

𝑑4

𝑠2

𝑟1
𝑑1

𝑟1

Traversal on the knowledge graph
Nodes in a query graph: entities and variables
Edges in a query graph: the logical predicate (with negation)
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Background: Logical query examples

Logical query in 
natural language

Logical query in 
formal language

What are the 
treatment for “𝑑1” 

but NOT “𝑑4”
𝑦. 𝑟2 𝑑1, 𝑦 ∧ ¬𝑟2(𝑑4, 𝑦)
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𝑠1

𝑠2

𝑠4

𝑠3 𝑑3

𝑡1

𝑡4

𝑟1

𝑟2

𝑑2

A query graph representation for
multi-constraint + logical negation query

𝑦𝑑1
𝑟2

𝑑4
¬𝑟2

𝑑1

𝑑4

Traversal on the knowledge graph

𝑡2

Nodes in a query graph: entities and variables
Edges in a query graph: the logical predicate (with negation)

𝑡3
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Background: Logical query examples

Logical query in 
natural language

Logical query in 
formal language

What are the 
syndromes for 

diseases “𝑑1” or “𝑑2”
𝑦. 𝑟1 𝑦, 𝑑1 ∨ 𝑟1(𝑦, 𝑑2)
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𝑠4 𝑑4

𝑑3

𝑡1

𝑡2

𝑡4

𝑡3

𝑟1

𝑟2

A query graph representation for
multi-constraint disjunctive query

𝑦𝑑1
𝑟1

Nodes in a query graph: entities and variables
Edges in a query graph: the logical predicate (with negation)
Simple graph CANNOT represent the disjunction operation. Two components for two parts

Traversal on the knowledge graph

𝑠1

𝑠2

𝑠3

𝑑1

𝑑2

𝑦 𝑑2
𝑟1
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Background: Summary

Questions for rigorous research:

• How to define the semantics and syntax?

• How to represent and answer a query?

Challenge for knowledge graph in general:

• The graph is incomplete, traversal will fail!
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Background: Summary

• Semantics of queries

• Highly interpretable with logical conditions,

• Related to complex demands of knowledge.

• Syntax of queries

• variables and entities,

• logical connectives:

• Conjunction

• Disjunction

• Negation

• Representation

• A query graph

• In the previous examples, the answers are identified by

• Symbolic traversal on the knowledge graph

11Zihao Wang, CSE, HKUST, zihao-wang.github.io



2. Problem definition and general strategies
2.1 Notations and definitions

2.2 Two general strategies
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Problem definition and general strategies
Notations

Data

• A knowledge graph, triple set 𝒦𝒢𝑜 = ℎ, 𝑟, 𝑡 ,

• For simplicity, the relations ℛ and entities ℰ are assumed to be known.
• (This assumption can be undermined)

Open World Assumption (OWA)

• An observed knowledge graph 𝒦𝒢𝑜,

• An unobserved knowledge graph 𝒦𝒢𝑢,

• 𝒦𝒢𝑜 ⊂ 𝒦𝒢𝑢

13Zihao Wang, CSE, HKUST, zihao-wang.github.io



Problem definition and general strategies
Query syntax
Syntax of Existential First Order (EFO) query family
(organized as Unions of Conjunctive Queries (UCQ))
• An UCQ query is represented as the disjunction of conjunctive queries,

𝑈𝐶𝑄 𝑦; 𝑥1, … , 𝑥𝑛 =ሧ
𝑗=1,…,𝑁

𝐶𝑄𝑗 𝑦; 𝑥1, … , 𝑥𝑛

• Each conjunctive query is the conjunctive of atomic formulas,

𝐶𝑄𝑗 𝑦; 𝑥1, … , 𝑥𝑛 = 𝑦. ∃𝑥1, … , ∃𝑥𝑛.ሥ
𝑘=1,…,𝑀𝑗

𝑎𝑗𝑘

• Each atomic formula is 𝑎𝑗𝑘 = 𝑟 𝑡𝑠, 𝑡𝑜 , or 𝑎𝑗𝑘 = ¬𝑟 𝑡𝑠, 𝑡𝑜 ,
• where 𝑟 is the binary relation in KG, 
• 𝑡𝑠 and 𝑡𝑜 are the subjective/objective terms, respectively,
• Each term is either an entity or variable (𝑦, 𝑥1, … , 𝑥𝑛).

14Zihao Wang, CSE, HKUST, zihao-wang.github.io



Problem definition and general strategies
Query semantics

The answer set 𝐴 = 𝑎 ∈ ℰ:𝑄 𝑦 = 𝑎; 𝑥1, … , 𝑥𝑛 = True , depends on the 
semantics of the substitution 𝑄 𝑦 = 𝑎; 𝑥1, … , 𝑥𝑛 .
Q: How to evaluate 𝑄 𝑦 = 𝑎; 𝑥1, … , 𝑥𝑛 ?
A: Evaluate the expansion, reduce to the model checking problem

ሧ
𝑗=1,…,𝑁

∃𝑥1, … , ∃𝑥𝑛.ሥ
𝑘=1,…,𝑀𝑗

ቚ𝑎𝑗𝑘
𝑦=𝑎

Then, it eventually depends on each atomic formula 𝑎𝑗𝑘.

• Closed world evaluation (Answer set 𝐴𝑜): 
• 𝑟 𝑠, 𝑜 = True if and only if s, r, o ∈ 𝒦𝒢𝑜, which is traversal on observed KG.

• Open world evaluation (Answer set 𝐴𝑢): 
• 𝑟 𝑠, 𝑜 = True if and only if s, r, o ∈ 𝒦𝒢𝑢, where 𝒦𝒢𝑢 is unobserved.

15Zihao Wang, CSE, HKUST, zihao-wang.github.io



Problem definition and general strategies
The challenge of the open world problem

How to break the
data incompleteness

Query

Observed KG

Unobserved KG

Graph Traversal 𝐴𝑜

𝐴𝑢

?

16Zihao Wang, CSE, HKUST, zihao-wang.github.io



Problem definition and general strategies
Symbolic strategy:  completion and search

Observed KG

Unobserved KG

Graph Traversal 𝐴𝑜

𝐴𝑢

KG Completion

Graph Traversal

Query
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Problem definition and general strategies
Neural strategy: end-to-end training

Observed KG

Unobserved KG

Graph Traversal 𝐴𝑜

𝐴𝑢

Neural ModelsQuery

Inference

Training
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3. Tree-Formed Queries (TFQ)
Reduction to computational graphs

The design space of neural models for TFQ
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Tree-Formed Queries (TFQ)

✓We can interpretate logical queries in natural language

• How can we compute logical queries?
• In general the symbolic methods are NP-complete.

• What are simpler query families to handle?
• Convert the query answering process as set operations.

• Result in a computational tree.

20

𝑉1 𝑉?
𝑟2

𝑠1
𝑟1

A simple query graph

𝑉2

𝑉?

𝑟2

𝑉1

𝑟1

𝑉3 𝑟2𝑟1

A complex query graph
Zihao Wang, CSE, HKUST, zihao-wang.github.io



Tree-Formed Queries (TFQ)
We begin with a working example

• Tree-form query family contains the queries 
that can be converted into the computational tree.

• What is a computational tree? A working example

21

Natural Language: Find non-American directors whose movie won Golden Globes or Oscar?

Logical Formula: 𝑞 = 𝑉?∃ 𝑉1. (Won 𝑉1, GoldenGlobes ∨ Won(𝑉1, Oscar)) ∧ ¬BornIn 𝑉?, America ∧ Direct(V?, V1)
Set Operator Tree: DirectorOf(WinnerOf GoldenGlobes ∪ WinnerOf Oscar ) ∩ BornIn America 𝐶

GoldenGlobes

Oscar

America

P

P

P

∪

𝐶

P

∩

Answer Set

WinnerOf

DirectorOf

BornIn
P set projection

∪

∩

𝐶

set union

set intersection

set complement

set operations

Set Operators
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Tree-Formed Queries (TFQ)
A working example (1/4)

𝑞 = 𝑉?∃ 𝑉1. (Won 𝑉1, GoldenGlobes ∨ Won(𝑉1, Oscar)) ∧ ¬BornIn 𝑉?, America ∧ Direct(V?, V1)

• Skolemization

• Won 𝑉1, GoldenGlobes
Skolemization

෡𝑉1 = WinnerOf GoldenGlobes

• Won 𝑉1, GoldenGlobes
Skolemization

෡𝑉1 = WinnerOf Oscar

• Direct V?, V1
Skolemization

෡𝑉? = DirectorOf 𝑉1

• ¬ BornIn 𝑉?, America
Skolemization

෡𝑉? = (¬BornIn)(America)

• Remove 𝑉1 and replace the connectives with set operations, then we get computational tree.
𝑞 = DirectorOf WinnerOf GoldenGlobes ⋃WinnerOf Oscar ∩ BornIn America 𝐶

22

We use 𝑉1, 𝑉? instead of 𝑥, 𝑦 to 
demonstrate quantifiers are more 

fundamental than choices of letters.

Skolemization:
One way to eliminate the quantified variables

1. Eliminate 𝑉1
2. Replace operations

Zihao Wang, CSE, HKUST, zihao-wang.github.io



Tree-Formed Queries (TFQ)
A working example (2/4)

• The query in the example is an existential first order query
𝑞 = 𝑉?∃ 𝑉1. (Won 𝑉1, GoldenGlobes ∨ Won(𝑉1, Oscar)) ∧ ¬BornIn 𝑉?, America ∧ Direct(V?, V1)

• Convert it to a Unions of Conjunctive Query (UCQ)
𝑞 = 𝑉?∃ 𝑉1. Won 𝑉1, GoldenGlobes ∧ ¬BornIn 𝑉?, America ∧ Direct V?, V1

∨ (Won 𝑉1, Oscar ∧ ¬BornIn 𝑉?, America ∧ Direct(V?, V1))

𝑞 = Union
𝑉?∃ 𝑉1. Won 𝑉1, GoldenGlobes ∧ ¬BornIn 𝑉?, America ∧ Direct V?, V1 ,

𝑉?∃ 𝑉1. Won 𝑉1, Oscar ∧ ¬BornIn 𝑉?, America ∧ Direct V?, V1

• For each conjunctive query
• Convert the logical constraints to set operations.

23Zihao Wang, CSE, HKUST, zihao-wang.github.io



Solutions for TFQs
A working example (3/4)

• An UCQ query

𝑞 = SetUnion
𝑉?∃ 𝑉1. Won 𝑉1, GoldenGlobes ∧ ¬BornIn 𝑉?, America ∧ Direct V?, V1 ,

𝑉?∃ 𝑉1. Won 𝑉1, Oscar ∧ ¬BornIn 𝑉?, America ∧ Direct V?, V1

• For each conjunctive query (taking the first one as the example)

• The atomic queries are Skolemized

• Won 𝑉1, GoldenGlobes
Skolemization

෡𝑉1 = WinnerOf GoldenGlobes

• Direct V?, V1
Skolemization

෡𝑉? = DirectorOf 𝑉1

• ¬ BornIn 𝑉?, America
Skolemization

෡𝑉? = ¬BornIn(America)

• Eliminate the existential variable 𝑉1, the free variable 𝑉? should satisfies the two conditions
• ෡𝑉? = DirectorOf WinnerOf GoldenGlobes

• ෡𝑉? = ¬BornIn America

• Reorganize them with the set operations
• 𝑉? = DirectorOf WinnerOf GoldenGlobes ∩ ¬BornIn America = DirectorOf WinnerOf GoldenGlobes − BornIn America

• Note that the intersection + logical negated projection can be considered as set difference.

24Zihao Wang, CSE, HKUST, zihao-wang.github.io



Solutions for TFQs
A working example (4/4)

• For the first conjunctive query
𝑉? = DirectorOf WinnerOf GoldenGlobes − BornIn America

• Similarly for the other conjunctive query
𝑉? = DirectorOf WinnerOf Oscar − BornIn America

Then the computational tree

25

Oscar

America

P

P 𝐶

∩
Answer Set

BornIn

GoldenGlobes P

WinnerOf

WinnerOf

∪

P

DirectorOf

P

DirectorOf

∩
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Quick Summarization

• What is a computational tree of a TFQ?
• A tree whose leaves are entities, intermediate nodes are set operators, and the root node is 

the answer set.
• The answer set can be computed by executing set operations following the bottom-up order.

• One query can be represented with multiple equivalent computational trees
• For a logical query, there are many logical equivalent forms
• Each logical form yields one or more computational trees

• Operators in trees can be different
• Intersection & complement = intersection & difference
• For UCQs, no need for “union” because we can collect answers from each CQ

• Can UCQs always be converted to TFQs?
• It will be discussed in the next lecture

26Zihao Wang, CSE, HKUST, zihao-wang.github.io



Solutions for TFQs
The design space of neural TFQ answering

Concept Definition Comment

Entity set ℰ The entity set in KG

Relation set ℛ The relation set in KG

Set embedding space 𝒳 Embedding space

Set embedding lookup 𝐸𝒳: ℰ ↦ 𝒳 Singleton set embedding

Entity embedding space 𝒴 Embedding space

Entity embedding lookup 𝐸𝒴: ℰ ↦ 𝒴 Entity embedding

Set intersection 𝐼:𝒳 ×⋯×𝒳 ↦ 𝒳 Binary or N-ary

Set union 𝑈:𝒳 ×⋯×𝒳 ↦ 𝒳 Binary or N-ary

Set complement 𝐶:𝒳 ↦ 𝒳 Replaceable with set difference

Set projection 𝑃:𝒳 × ℛ ↦ 𝒳 One-hop link prediction

Scoring function 𝑠:𝒳 × 𝒴 ↦ ℝ How much an entity is in a set

27

Wang, Z., Yin, H., & Song, Y. (2021). Benchmarking the combinatorial generalizability of complex query answering on knowledge graphs. arXiv preprint arXiv:2109.08925.

P set projection

∪

∩

𝐶

set union

set intersection

set complement

set operations

Set Operators

Converting to computational tree
makes it possible to model
set operations with neural 
networks
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Solutions for TFQs
Neural TFQ intuition explained

Logical query in 
natural language

Logical query in 
formal language

What is the treatment 
for disease “𝑑4”?

𝑦. 𝑟2(𝑑4, 𝑦)

28

DiseaseSyndrome Treatment

Traversal on the knowledge graph

𝑠1

𝑠2

𝑠4

𝑠3

𝑑1

𝑑4

𝑑3

𝑡1

𝑡2

𝑡4

𝑡3

𝑟1

𝑟2

𝑑4 𝑦
𝑟2

𝑑2

1. Computation of query embedding: ො𝑦 = 𝑃 𝐸𝒳 𝑑4 , 𝑟2
2. Rank entities by 𝑠 ො𝑦, 𝐸𝒴(𝑡1) , 𝑠 ො𝑦, 𝐸𝒴(𝑡2) ,…

The computational DAG

𝑑4 𝐸𝒳 𝑑4 𝑃 _, 𝑟2 𝑡𝑘𝐸𝒴(𝑡𝑘)

Neural projection in embedding space

𝐸𝒳 ⋅ : find the embedding of an answer set
𝐸𝒴 ⋅ : find the embedding of an entity Zihao Wang, CSE, HKUST, zihao-wang.github.io



Solutions for TFQs
Neural TFQ intuition explained

Logical query in 
natural language

Logical query in 
formal language

What are the 
treatments for 

syndrome “𝑠1”?
𝑦. ∃𝑥. 𝑟1 𝑠1, 𝑥 ∧ 𝑟2(𝑥, 𝑦)

29
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𝑠2

𝑠4

𝑠3

𝑑4

𝑑3

𝑡1
𝑟1

𝑟2

𝑠1 𝑑1

𝑑2 𝑡2

𝑡4

𝑥 𝑦
𝑟2

𝑠1
𝑟1 Traversal on the knowledge graph

The computational DAG

𝑠1 𝐸𝒳 𝑠1 𝑃 _, 𝑟1 𝑡𝑘𝐸𝒴(𝑡𝑘)𝑃 _, 𝑟2

Multi-hop neural projection in embedding space

𝑡3

1. Computation of query embedding: 
ො𝑦 = 𝑃 𝑃 𝐸𝒳 𝑠1 , 𝑟1 , 𝑟2

2. Rank entities by 𝑠 ො𝑦, 𝐸𝒴(𝑡1) , 𝑠 ො𝑦, 𝐸𝒴(𝑡2) ,…

3. The missing 𝑡3 is recovered in embedding space.
Zihao Wang, CSE, HKUST, zihao-wang.github.io



Solutions for TFQs
Neural TFQ intuition explained

Logical query in 
natural language

Logical query in 
formal language

What is the common 
syndrome of diseases 

“𝑑1” and “𝑑4”?
𝑉?. 𝑟1 𝑉?, 𝑑1 ∧ 𝑟1(𝑉?, 𝑑4)

30

DiseaseSyndrome Treatment

𝑠1

𝑠4

𝑠3 𝑑3

𝑡1

𝑡2

𝑡4

𝑡3

𝑟1

𝑟2

𝑑2

𝑉?𝑑1

𝑑1

𝑑4

𝑠2

𝑟1
𝑑1

𝑟1 Traversal on the knowledge graph

𝑑1 𝐸𝒳 𝑑1 𝑃 _, 𝑟1
−1

𝑑4 𝐸𝒳 𝑑4 𝑃 _, 𝑟1
−1

𝐼 _, _
1. Computation of query embedding: 

ො𝑦 = 𝐼 𝑃 𝐸𝒳 𝑑1 , 𝑟1
−1 , 𝑃 𝐸𝒳 𝑑4 , 𝑟1

−1

2. Rank entities by 𝑠 ො𝑦, 𝐸𝒴(𝑠1) , 𝑠 ො𝑦, 𝐸𝒴(𝑠2) ,…

𝑠𝑘𝐸𝒴(𝑠𝑘)

The computational DAG

Zihao Wang, CSE, HKUST, zihao-wang.github.io



Solutions for TFQs
Neural TFQ intuition explained

Logical query in 
natural language

Logical query in 
formal language

What are the 
treatment for “𝑑1” 

but NOT “𝑑4”
𝑉?. 𝑟2 𝑑1, 𝑉? ∧ ¬𝑟2(𝑑4, 𝑉?)

31

DiseaseSyndrome Treatment

𝑠1

𝑠2

𝑠4

𝑠3 𝑑3

𝑡1

𝑡4

𝑟1

𝑟2

𝑑2

𝑉?𝑑1
𝑟2

𝑑4
¬𝑟2

𝑑1

𝑑4

Traversal on the knowledge graph

𝑡2

𝑡3

𝑑1 𝐸𝒳 𝑑1 𝑃 _, 𝑟2

𝑑4 𝐸𝒳 𝑑4 𝑃 _, 𝑟2

𝐼 _, _ 𝑡𝑘𝐸𝒴(𝑡𝑘)

The computational DAG

𝐶 _

1. Computation of query embedding: 

ො𝑦 = 𝐼 𝑃 𝐸𝒳 𝑑1 , r2 , 𝐶 𝑃 𝐸𝒳 𝑑4 , 𝑟2

2. Rank entities by 𝑠 ො𝑦, 𝐸𝒴(𝑠1) , 𝑠 ො𝑦, 𝐸𝒴(𝑠2) ,…

3. The missing 𝑡3 is recovered in embedding space.

Zihao Wang, CSE, HKUST, zihao-wang.github.io



Background:
Logical query examples

Logical query in 
natural language

Logical query in 
formal language

What are the 
syndromes for 

diseases “𝑑1” or “𝑑2”
𝑦. 𝑟1 𝑦, 𝑑1 ∨ 𝑟1(𝑦, 𝑑2)

32

DiseaseSyndrome Treatment

𝑠4 𝑑4

𝑑3

𝑡1

𝑡2

𝑡4

𝑡3

𝑟1

𝑟2

𝑦𝑑1
𝑟1

Traversal on the knowledge graph

𝑠1

𝑠2

𝑠3

𝑑1

𝑑2

𝑦 𝑑2
𝑟1

The computational DAG

𝑑1 𝐸𝒳 𝑑1 𝑃 _, 𝑟1
−1

𝑠𝑘
𝐸𝒴(𝑠𝑘)

𝑑2 𝐸𝒳 𝑑2 𝑃 _, 𝑟1
−1 𝐸𝒴(𝑠𝑘)

1. Computation of query embedding of each CQ
ෞ𝑦1 = 𝑃 𝐸𝒳 𝑑1 , r1

−1 , ෞ𝑦2 = 𝑃 𝐸𝒳 𝑑4 , r1
−1

2. Compute scores separately

s11 = 𝑠 ෞ𝑦1, 𝐸𝒴(𝑠1) , 𝑠21 = 𝑠 ෞ𝑦2, 𝐸𝒴(𝑠1) , …

3. Final score is collected by 𝑠𝑖 = max 𝑠1𝑖 , 𝑠2𝑖
4. Rank entities by the final score 𝑠𝑖

Zihao Wang, CSE, HKUST, zihao-wang.github.io



Summary of the design intuitions

• Following the computational tree, forward passing of neural networks 
can simulate the graph traversal in the embedding space.

• UCQ provides a way to handle disjunction. But there are also other 
ways.

• The entire model is composed of several neutralized set operators 
and properly defined functions.
• We will introduce several concrete designs later.

• The missing answers can be found because of the generalizability of 
neural models.
• We will explain how to train models with their designs
• But in general, it is negative sampling

33

𝐿 𝑞 = −෍
𝑎∈𝐴𝑞

𝑠 𝑞, 𝑎 +෍
𝑖=1,…,𝑘,𝑒𝑖

−∉𝐴𝑞

𝑠(𝑞, 𝑒𝑖
−)

Zihao Wang, CSE, HKUST, zihao-wang.github.io



Solutions for TFQs
A unified template for neural TFQ models

34

Concept Definition Comment

Entity set ℰ Known notation

Relation set ℛ Known notation

Set embedding space 𝒳 [Query Embedding: Slot 1]

Set embedding lookup 𝐸𝒳: ℰ ↦ 𝒳 Simplified

Entity embedding space 𝒴 [Entity embedding: Slot 2]

Entity embedding lookup 𝐸𝒴: ℰ ↦ 𝒴 Simplified

Set intersection 𝐼:𝒳 ×⋯×𝒳 ↦ 𝒳 [Slot 3]

Set union 𝑈:𝒳 ×⋯×𝒳 ↦ 𝒳 [Slot 4]

Set complement 𝐶:𝒳 ↦ 𝒳 [Slot 5]

Set projection 𝑃:𝒳 × ℛ ↦ 𝒳 [Slot 6]

Scoring function 𝑠:𝒳 × 𝒴 ↦ ℝ [Slot 7]

Each method will 
be introduced by 

filling 7 slots

Zihao Wang, CSE, HKUST, zihao-wang.github.io



Solutions for TFQs
Vector embedding space: GQE

35

Definition Comment

𝒳 𝑞 ∈ ℝ𝑑

𝒴 𝑎 ∈ ℝ𝑑

𝐼:𝒳 × ⋯×𝒳 ↦ 𝒳 𝐼 𝑞1, … , 𝑞𝑛 = 𝑊Ψ MLP 𝑞1 , … , MLP 𝑞𝑛

𝑈:𝒳 ×⋯×𝒳 ↦ 𝒳 UCQ

𝐶:𝒳 ↦ 𝒳 NA

𝑃:𝒳 × ℛ ↦ 𝒳 𝑃 𝑞, 𝑟 = Rr𝑞

𝑠:𝒳 × 𝒴 ↦ ℝ 𝑠 𝑞, 𝑎 =
𝑞𝑇𝑎

𝑞 𝑎

𝑀𝐿𝑃: multi-layer perceptron
Ψ: a permutation invariant operator
𝑊: a matrix
𝑅𝑟: a matrix indexed by relation 𝑟

Hamilton, W., Bajaj, P., Zitnik, M., Jurafsky, D., & Leskovec, J. (2018). Embedding logical queries on knowledge graphs. Advances in neural information processing systems, 31.

Training objective 𝐿 𝑞 = max(0, 1 − 𝑠 𝑞, 𝑎 + 𝑠(𝑞, 𝑒−))

Zihao Wang, CSE, HKUST, zihao-wang.github.io
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Solutions for TFQs
Geometric embedding space: Q2B (0/4)

Query Plan Embedding Space

Slides credit: Jure Leskovec,

Zihao Wang, CSE, HKUST, zihao-wang.github.io



Solutions for TFQs
Geometric embedding space: Q2B (1/4)

37

Definition Comment

𝒳 𝑞 is a box in ℝ𝑑

𝒴 𝑎 ∈ ℝ𝑑

𝐼:𝒳 ×⋯×𝒳 ↦ 𝒳
𝑞𝐼 = 𝐼 𝑞1, … , 𝑞𝑖 , … , 𝑞𝑛

𝑐𝐼 = ∑𝑎𝑖𝑐
𝑞𝑖 , 𝑎𝑖 = softmax𝑖=1,…,𝑛 MLP(𝑞𝑖)

𝑤𝐼 = min 𝑤𝑞1 , … , 𝑤𝑞𝑛 𝜎(Deepset(𝑞1, … , 𝑞𝑛))

𝑈:𝒳 ×⋯×𝒳 ↦ 𝒳 UCQ

𝐶:𝒳 ↦ 𝒳 NA

𝑃:𝒳 × ℛ ↦ 𝒳 Box 𝑐𝑃 𝑞,𝑟 , 𝑤𝑃 𝑞,𝑟 = Box(𝑐𝑞 + 𝑐𝑟 , 𝑤𝑞 + 𝑤𝑟)

𝑠:𝒳 × 𝒴 ↦ ℝ 𝑠 𝑞, 𝑎 = 𝛾 − dist𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑞, 𝑎 − 𝛼dist𝑖𝑛𝑠𝑖𝑑𝑒(𝑞, 𝑎)

Training objective 𝐿 𝑞 = − log𝜎 𝑠 𝑞, 𝑎 − ∑𝑗=1,…,𝑘
1

𝑘
log 𝜎 𝑠 𝑞, 𝑒𝑗

−

A box in ℝ𝑑 is parameterized by a vector 

𝑐𝑞 , 𝑤𝑞 ∈ ℝ𝑑 ×ℝ+
𝑑

𝑞 = Box 𝑐𝑞 , 𝑤𝑞 = 𝑣 ∈ ℝ𝑑: 𝑐𝑖
𝑞
− 𝑤𝑖

𝑞
< 𝑣𝑖 < 𝑐𝑖

𝑞
+ 𝑤𝑖

𝑞

• 𝑐 the center of a box
• 𝑤 the half width of a box

center

Half width

Ren, H., Hu, W., & Leskovec, J. (2020). Query2box: Reasoning over knowledge graphs in vector space using box embeddings. arXiv preprint arXiv:2002.05969.

Zihao Wang, CSE, HKUST, zihao-wang.github.io



Solutions for TFQs
Geometric embedding space: Q2B (2/4)

38

Definition Comment

𝒳 𝑞 is a box in ℝ𝑑

𝒴 𝑎 ∈ ℝ𝑑

𝐼:𝒳 × ⋯×𝒳 ↦ 𝒳
𝑞𝐼 = 𝐼 𝑞1, … , 𝑞𝑖 , … , 𝑞𝑛

𝑐𝐼 = ∑𝑎𝑖𝑐
𝑞𝑖 , 𝑎𝑖 = softmax𝑖=1,…,𝑛 MLP(𝑞𝑖)

𝑤𝐼 = min 𝑤𝑞1 , … , 𝑤𝑞𝑛 𝜎(Deepset(𝑞1, … , 𝑞𝑛))

𝑈:𝒳 ×⋯×𝒳 ↦ 𝒳 UCQ

𝐶:𝒳 ↦ 𝒳 NA

𝑃:𝒳 × ℛ ↦ 𝒳 Box 𝑐𝑃 𝑞,𝑟 , 𝑤𝑃 𝑞,𝑟 = Box(𝑐𝑞 + 𝑐𝑟 , 𝑤𝑞 + 𝑤𝑟)

𝑠:𝒳 × 𝒴 ↦ ℝ 𝑠 𝑞, 𝑎 = 𝛾 − dist𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑞, 𝑎 − 𝛼dist𝑖𝑛𝑠𝑖𝑑𝑒(𝑞, 𝑎)

Training objective 𝐿 𝑞 = − log𝜎 𝑠 𝑞, 𝑎 − ∑𝑗=1,…,𝑘
1

𝑘
log 𝜎 𝑠 𝑞, 𝑒𝑗

−

The intuition for the intersection of multiple boxes

𝑞1 = (𝑐𝑞1 , 𝑤𝑞1)

𝑞2 = (𝑐𝑞2 , 𝑤𝑞2)

𝑞𝐼 = (𝑐𝐼, 𝑤𝐼)

Ren, H., Hu, W., & Leskovec, J. (2020). Query2box: Reasoning over knowledge graphs in vector space using box embeddings. arXiv preprint arXiv:2002.05969.

Zihao Wang, CSE, HKUST, zihao-wang.github.io



Solutions for TFQs
Geometric embedding space: Q2B (3/4)

39

Definition Comment

𝒳 𝑞 is a box in ℝ𝑑

𝒴 𝑎 ∈ ℝ𝑑

𝐼:𝒳 ×⋯×𝒳 ↦ 𝒳
𝑞𝐼 = 𝐼 𝑞1, … , 𝑞𝑖 , … , 𝑞𝑛

𝑐𝐼 = ∑𝑎𝑖𝑐
𝑞𝑖 , 𝑎𝑖 = softmax𝑖=1,…,𝑛 MLP(𝑞𝑖)

𝑤𝐼 = min 𝑤𝑞1 , … , 𝑤𝑞𝑛 𝜎(Deepset(𝑞1, … , 𝑞𝑛))

𝑈:𝒳 ×⋯×𝒳 ↦ 𝒳 UCQ

𝐶:𝒳 ↦ 𝒳 NA

𝑃:𝒳 × ℛ ↦ 𝒳 Box 𝑐𝑃 𝑞,𝑟 , 𝑤𝑃 𝑞,𝑟 = Box(𝑐𝑞 + 𝑐𝑟 , 𝑤𝑞 + 𝑤𝑟)

𝑠:𝒳 × 𝒴 ↦ ℝ 𝑠 𝑞, 𝑎 = 𝛾 − dist𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑞, 𝑎 − 𝛼dist𝑖𝑛𝑠𝑖𝑑𝑒(𝑞, 𝑎)

Training objective 𝐿 𝑞 = − log𝜎 𝑠 𝑞, 𝑎 − ∑𝑗=1,…,𝑘
1

𝑘
log 𝜎 𝑠 𝑞, 𝑒𝑗

−

The intuition for the scoring function
Outside distance and inside distance

𝑎

dist𝑖𝑛𝑠𝑖𝑑𝑒(𝑞, 𝑎)

dist𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑞, 𝑎

𝑎dist𝑖𝑛𝑠𝑖𝑑𝑒(𝑞, 𝑎)

Ren, H., Hu, W., & Leskovec, J. (2020). Query2box: Reasoning over knowledge graphs in vector space using box embeddings. arXiv preprint arXiv:2002.05969.

𝑐

𝑏

𝑐

𝑏

Zihao Wang, CSE, HKUST, zihao-wang.github.io



Solutions for TFQs
Geometric embedding space: Q2B (4/4)

40

Definition Comment

𝒳 𝑞 is a box in ℝ𝑑

𝒴 𝑎 ∈ ℝ𝑑

𝐼:𝒳 × ⋯×𝒳 ↦ 𝒳
𝑞𝐼 = 𝐼 𝑞1, … , 𝑞𝑖 , … , 𝑞𝑛

𝑐𝐼 = ∑𝑎𝑖𝑐
𝑞𝑖 , 𝑎𝑖 = softmax𝑖=1,…,𝑛 MLP(𝑞𝑖)

𝑤𝐼 = min 𝑤𝑞1 , … , 𝑤𝑞𝑛 𝜎(Deepset(𝑞1, … , 𝑞𝑛))

𝑈:𝒳 ×⋯×𝒳 ↦ 𝒳 UCQ

𝐶:𝒳 ↦ 𝒳 NA

𝑃:𝒳 × ℛ ↦ 𝒳 Box 𝑐𝑃 𝑞,𝑟 , 𝑤𝑃 𝑞,𝑟 = Box(𝑐𝑞 + 𝑐𝑟 , 𝑤𝑞 + 𝑤𝑟)

𝑠:𝒳 × 𝒴 ↦ ℝ 𝑠 𝑞, 𝑎 = 𝛾 − dist𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑞, 𝑎 − 𝛼dist𝑖𝑛𝑠𝑖𝑑𝑒(𝑞, 𝑎)

Training objective 𝐿 𝑞 = − log𝜎 𝑠 𝑞, 𝑎 − ∑𝑗=1,…,𝑘
1

𝑘
log 𝜎 𝑠 𝑞, 𝑒𝑗

−

The realization for the scoring function
Outside distance and inside distance:

𝑞𝑚𝑎𝑥,𝑖 = 𝑐𝑖
𝑞
+ 𝑤𝑖

𝑞

𝑞𝑚𝑖𝑛,𝑖 = 𝑐𝑖
𝑞
− 𝑤𝑖

𝑞

𝑑𝑖𝑠𝑡𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑎; 𝑞 = max 𝑎 − 𝑞𝑚𝑎𝑥, 0 + max 𝑞𝑚𝑖𝑛 − 𝑎, 0 1

𝑑𝑖𝑠𝑡𝑖𝑛𝑠𝑖𝑑𝑒 𝑎; 𝑞 = 𝑐𝑞 −min 𝑞𝑚𝑎𝑥, max 𝑞𝑚𝑖𝑛, 𝑎 1

𝑎

dist𝑖𝑛𝑠𝑖𝑑𝑒(𝑞, 𝑎)

dist𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑞, 𝑎

Ren, H., Hu, W., & Leskovec, J. (2020). Query2box: Reasoning over knowledge graphs in vector space using box embeddings. arXiv preprint arXiv:2002.05969.

𝑞𝑚𝑎𝑥

𝑞𝑚𝑖𝑛

𝑐

𝑏

Zihao Wang, CSE, HKUST, zihao-wang.github.io



Solutions for TFQs with set complement
Probability embedding space: BetaE

41

Definition Comment

𝒳 𝑞 = 𝛼1
𝑞
, 𝛽1

𝑞
, … , 𝛼𝑑

𝑞
, 𝛽𝑑

𝑞
∈ 0,∞ 2𝑑

𝒴 𝑎 ∈ [0,∞)2𝑑

𝐼:𝒳 ×⋯×𝒳 ↦ 𝒳
𝐼 𝑞1, … , 𝑞𝑖 , … , 𝑞𝑛 =෍

𝑖

𝛼𝑖𝑞𝑖 ,

𝛼𝑖 = softmax NN 𝑞𝑖

𝑈:𝒳 ×⋯×𝒳 ↦ 𝒳 UCQ

𝐶:𝒳 ↦ 𝒳 𝑪 𝒒 = 𝟏/𝒒

𝑃:𝒳 × ℛ ↦ 𝒳 𝑃 𝑞, 𝑟 = MLP𝑟(𝑞)

𝑠:𝒳 × 𝒴 ↦ ℝ 𝑠 𝑞, 𝑎 = 𝛾 − ෍

𝑖=1,…,𝑑

KL 𝐵 𝛼𝑖
𝑞
, 𝛽𝑖

𝑞
|𝐵 𝛼𝑖

𝑎 , 𝛽𝑖
𝑎

Training objective 𝐿 𝑞 = − log𝜎 𝑠 𝑞, 𝑎 − ∑𝑗=1,…,𝑘
1

𝑘
log 𝜎 𝑠 𝑞, 𝑒𝑗

−

Ren, H., & Leskovec, J. (2020). Beta embeddings for multi-hop logical reasoning in knowledge graphs. Advances in Neural Information Processing Systems, 33, 19716-19726.

Q: How to model the set complement?
A: Use inductive bias of probability families
• P.d.f. of Beta distribution Beta 𝛼, 𝛽

𝑓 𝑥; 𝛼, 𝛽 =
Γ 𝛼 + 𝛽

Γ 𝛼 Γ 𝛽
𝑥𝛼−1 1 − 𝑥 𝛽−1

where Γ 𝑥 is the Gamma function.
• Set embedding: 𝑑 Beta distributions.

Zihao Wang, CSE, HKUST, zihao-wang.github.io



Solutions for TFQs with set union
Empirical sample embedding space: Q2P

Complement

Turing 
Award

Canada
Has Citizen

Intersection
Graduate

𝑞 = 𝑉? . ∃𝑉:𝑊𝑖𝑛 𝑇𝑢𝑟𝑖𝑛𝑔𝐴𝑤𝑎𝑟𝑑, 𝑉
∧ ¬𝐶𝑖𝑡𝑖𝑧𝑒𝑛 𝐶𝑎𝑛𝑎𝑑𝑎, 𝑉 ∧ 𝐺𝑟𝑎𝑑𝑢𝑎𝑡𝑒(𝑉, 𝑉?)

Has Winner

Computation Graph

Particle Embeddings

Embedding Space
Box Embeddings

Vector Embeddings

The multi-hop logical operations 
make the query answers diversified

The answers embeddings are
scattered in the embedding space

42

𝑃𝑖 = [𝑝𝑖
(1)

, 𝑝𝑖
(2)
, 𝑝𝑖

(3)
, … , 𝑝𝑖

(𝐾)
] 

Bai, J., Wang, Z., Zhang, H., & Song, Y. (2022). Query2Particles: Knowledge graph reasoning with particle embeddings. arXiv preprint arXiv:2204.12847.

Zihao Wang, CSE, HKUST, zihao-wang.github.io



Solutions for TFQs with set union
Empirical sample embedding space: Q2P

43

𝑓𝑃(∙, 𝑒𝑙)

𝑃𝑖

𝑃𝑖+1

Relational Projection

Bai, J., Wang, Z., Zhang, H., & Song, Y. (2022). Query2Particles: Knowledge graph reasoning with particle embeddings. arXiv preprint arXiv:2204.12847.

43

𝑓𝐼
𝑃𝑖+1

𝑃𝑖
(1)

𝑃𝑖
(2)

𝑃𝑖
(3)

Intersection

𝑓𝐶
𝑃𝑖+1

𝑃𝑖

Complement

𝑃𝑖+1

𝑃𝑖
(1) 𝑃𝑖

(2)

UnionZihao Wang, CSE, HKUST, zihao-wang.github.io



Solutions for TFQs with set union
Empirical sample embedding space: Q2P

44

Definition Comment

𝒳 Multiple particles in ℝ𝑑

𝒴 ℝ𝑑

𝐼:𝒳 ×⋯×𝒳 ↦ 𝒳
𝐴𝑖 = self-attn(𝑃𝑖)

𝑃𝑖+1 = MLP(𝐴𝑖)

𝑈:𝒳 ×⋯×𝒳 ↦ 𝒳 Merge Particles

𝐶:𝒳 ↦ 𝒳
𝐴𝑖 = self−attn(𝑃𝑖)

𝑃𝑖+1 = MLP(𝐴𝑖)

𝑃:𝒳 × ℛ ↦ 𝒳
𝐴𝑖 = (1 - 𝑍)  ⊙𝑃𝑖 + 𝑍 ⊙ 𝑇
𝑃 𝑞, 𝑟 = self−attn(𝐴𝑖)

𝑠:𝒳 × 𝒴 ↦ ℝ 𝑠 𝑞, 𝑎 = max
𝑘=1,2,3,…,𝐾

< 𝑝𝑇
(𝑘)
, 𝑎 >

Training objective 𝐿 𝑞 = − log
𝑒𝑠 𝑞,𝑎

∑𝑣∈ℰ 𝑒
𝑠(𝑞,𝑣)

Bai, J., Wang, Z., Zhang, H., & Song, Y. (2022). Query2Particles: Knowledge graph reasoning with particle embeddings. arXiv preprint arXiv:2204.12847.

Gated Transition for customizing the 
directions of transitions for each 
vector in particles:

𝐴𝑖 = (1 - 𝑍)  ⊙𝑃𝑖 + 𝑍 ⊙ 𝑇
Here 𝑍 is the update gate, and 
𝑇 is transition for each 
particles. They are computed 
from 𝑃𝑖 and the relation 
embedding 𝑒𝑙 for relation 𝑙
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Solutions for TFQs with fuzzy logic
Fuzzy logic embedding space (1/4)

Designing set operators is tricky. Can we make it more theoretical?

Trying to incorporate it with fuzzy logic 𝑡-norm.

• A t-norm is a function T: [0, 1] × [0, 1] → [0, 1]

• Consider conjunction query 𝑞1 ∧ 𝑞2 𝑦; 𝑥1, …
• Consider the fuzzy Truth Value  𝑇𝑉[ 𝑞1 ∧ 𝑞2 𝑦 = 𝑎 ]

𝑇𝑉 𝑞1 ∧ 𝑞2 𝑦 = 𝑎 = 𝑇𝑉 𝑞1 𝑦 = 𝑎 ∧ 𝑞2 𝑦 = 𝑎
• Introduce 𝑡-norm ⊤, then,

𝑇𝑉 𝑞1 𝑦 = 𝑎 ∧ 𝑞2 𝑦 = 𝑎 = 𝑇𝑉 𝑞1 𝑦 = 𝑎 ⊤𝑇𝑉[𝑞2 𝑦 = 𝑎 ]

• Also, for disjunction and negation,
• 𝑇𝑉 𝑞1 𝑦 = 𝑎 ∨ 𝑞2 𝑦 = 𝑎 = 𝑇𝑉 𝑞1 𝑦 = 𝑎 ⊥ 𝑇𝑉 𝑞2 𝑦 = 𝑎

• 𝑇𝑉 ¬𝑞1 𝑦 = 𝑎 = 1 − 𝑇𝑉 𝑞1 𝑦 = 𝑎

45

We consider Godel 𝑡-norm in this lecture
• 𝑎 ⊤ 𝑏 = min(𝑎, 𝑏)
• 𝑎 ⊥ 𝑏 = max 𝑎, 𝑏

Zihao Wang, CSE, HKUST, zihao-wang.github.io



Solutions for TFQs with fuzzy logic
Fuzzy logic embedding space (2/4)

• A matrix 𝑀𝑞,𝑎 = 𝑇𝑉 𝑞 𝑦 = 𝑎 records everything we need.
where 𝑞 is an arbitrary query and 𝑎 is an entity.

𝑠 𝑞, 𝑎 = 𝑀𝑞,𝑎

• The range of 𝑞 looks infinitely large, but what really matters is
• Finite positive atomic queries, so that only finite rows should be recorded 𝑀𝑎𝑡𝑜𝑚𝑖𝑐.
• 𝑡-norm computation (introduced in previous page) generates infinite rows.

• We can of course consider the low rank decomposition of 𝑀𝑎𝑡𝑜𝑚𝑖𝑐.
𝑀𝑞,𝑎

𝑎𝑡𝑜𝑚𝑖𝑐 ≈ Ԧ𝑞𝑇 Ԧ𝑎

• Ԧ𝑞𝑇 ∈ ℝ𝑑 is the query embedding of an atomic query 𝑞(𝑦) = 𝑟(𝑒, 𝑦).

• Any atomic query can be written as 𝑞 𝑦 = 𝑟 𝑒, 𝑦 by allowing reverse 
relation.
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Solutions for TFQs with fuzzy logic
Fuzzy logic embedding space (3/4)

• Low rank (rank 𝑑) decomposition of 𝑀𝑎𝑡𝑜𝑚𝑖𝑐

𝑀𝑞,𝑎
𝑎𝑡𝑜𝑚𝑖𝑐 ≈ Ԧ𝑞𝑇 Ԧ𝑎

• Ԧ𝑞 is the query embedding
• Ԧ𝑎 is the entity embedding

• If we further assume that
• Ԧ𝑞 ∈ 0,1 𝑑, Ԧ𝑎 ∈ 0,1 𝑑

• 𝑡-norm is linear, for convenience we consider Godel 𝑡-norm

• Let 𝑞1, 𝑞2 be atomic query, then
𝑀𝑞1∧𝑞2,𝑎 = 𝑞1 ∧ 𝑞2

𝑇
Ԧ𝑎 = 𝑀𝑞1,𝑎⊤𝑀𝑞2,𝑎 = min 𝑀𝑞1,𝑎, 𝑀𝑞2,𝑎 = min 𝑞1

𝑇
Ԧ𝑎, 𝑞2

𝑇
Ԧ𝑎 = min(𝑞1

𝑇
, 𝑞2

𝑇
) Ԧ𝑎

• Conclusion:
𝑞1 ∧ 𝑞2 = min 𝑞1, 𝑞2 = 𝑞1⊤𝑞2
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Solutions for TFQs with fuzzy logic
Fuzzy logic embedding space (4/4)

• We omit Ԧ𝑞 as 𝑞.
𝑞1 ∧ 𝑞2 = 𝑞1⊤𝑞2

• Similarly
𝑞1 ∨ 𝑞2 = 𝑞1 ⊥ 𝑞2

¬𝑞 = 1 − 𝑞

• Then we parameterize atomic 
query 𝑞𝑎𝑡𝑜𝑚𝑖𝑐 = 𝑟(𝑞𝑖𝑛, 𝑦) as 
MLP𝑟(𝑞𝑖𝑛), we see the 
projection is 

𝑃 𝑞𝑖𝑛, 𝑟 = MLP𝑟(𝑞𝑖𝑛)

• Then we get the FuzzQE

48

Definition Comment

𝒳 𝑞 ∈ 0,1 𝑑

𝒴 𝑎 ∈ 0,1 𝑑

𝐼:𝒳 × ⋯×𝒳 ↦ 𝒳 𝐼 𝑞1, … , 𝑞𝑖 , … , 𝑞𝑛 = 𝑞1⊤…⊤𝑞𝑛

𝑈:𝒳 ×⋯×𝒳 ↦ 𝒳 𝑈 𝑞1, … , 𝑞𝑖 , … , 𝑞𝑛 = 𝑞1 ⊥ ⋯ ⊥ 𝑞𝑛

𝐶:𝒳 ↦ 𝒳 𝐶 𝑞 = 1 − 𝑞

𝑃:𝒳 × ℛ ↦ 𝒳 𝑃 𝑞, 𝑟 = MLP𝑟(𝑞)

𝑠:𝒳 × 𝒴 ↦ ℝ 𝑠 𝑞, 𝑎 = 𝑞𝑇𝑎

Chen, X., Hu, Z., & Sun, Y. (2022, June). Fuzzy logic based logical query answering on knowledge graphs. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 36, No. 4, pp. 3939-3948).
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Summary so far

• An overview of the problem + a detailed discussion about TFQ
• Definition

• Set operator parameterization
• In vector, geometric region, probability distribution, empirical samples, …

• Heuristics for projection, intersection, negation, and union.

• Fuzzy logic motivated methods.

• Questions
• How far is TFQ away from EFO1?

• Methods beyond simulating set operators?
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Tree-form queries and existential 
first order queries
1. The syntactical definition of tree-form queries

2. Relation between TFQ and EFO
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TFQ vs EFO: The syntax of TFQ (1/5)

Tree-form query family contains the queries that can be converted into 
the computational tree.

To formal define TFQ, we should describe logical queries that expresses

• Atomic query

• Set projection

• Set intersection

• Set union

• Set complement
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TFQ vs EFO: The syntax of TFQ (2/5)

To formal define TFQ, we should 
describe logical queries that 
expresses

➢Atomic query

• Set projection

• Set complement

• Set intersection

• Set union

Let 𝒯 be the set of all TFQs, then

➢Set of all atomic queries.
𝑆𝑎𝑡𝑜𝑚𝑖𝑐 = {𝑞 𝑦 = 𝑟 ℎ, 𝑦 :
𝑟 ∈ ℛ, ℎ ∈ ℰ} ∈ 𝒯

Note: let 𝑟 ∈ ℛ be a relation and 
𝑟−1 be its inverse, then 𝑟−1 ∈ ℛ.
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TFQ vs EFO: The syntax of TFQ (3/5)

To formal define TFQ, we should 
describe logical queries that 
expresses

• Atomic query

➢Set projection

• Set complement

• Set intersection

• Set union

Let 𝒯 be the set of all TFQs, then

• 𝑆𝑎𝑡𝑜𝑚𝑖𝑐 ∈ 𝒯

➢If 𝜙 𝑧 ∈ 𝒯, then 
∃𝑧. 𝜙 𝑧 ∧ 𝑟 𝑧, 𝑦 ∈ 𝒯

53

𝜙(𝑧) is a TFQ,
𝑇𝑉 𝜙 𝑧 = 𝑎 describes 
the probability of 𝑎 being 
the answer of 𝜙(𝑧)
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TFQ vs EFO: The syntax of TFQ (4/5)

To formal define TFQ, we should 
describe logical queries that 
expresses

• Atomic query

• Set projection

➢Set complement

• Set intersection

• Set union

Let 𝒯 be the set of all TFQs, then

• 𝑆𝑎𝑡𝑜𝑚𝑖𝑐 ∈ 𝒯

• If 𝜙 𝑧 ∈ 𝒯, then 
∃𝑧. 𝜙 𝑧 ∧ 𝑟 𝑧, 𝑦 ∈ 𝒯

➢If 𝜙 ∈ 𝒯, then
¬𝜙(𝑦) ∈ 𝒯
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TFQ vs EFO: The syntax of TFQ (5/5)

To formal define TFQ, we should 
describe logical queries that expresses

• Atomic query

• Set projection

• Set complement

➢Set intersection

➢Set union

Let 𝒯 be the set of all TFQs, then

• 𝑆𝑎𝑡𝑜𝑚𝑖𝑐 ∈ 𝒯

• If 𝜙 𝑧 ∈ 𝒯, then 
∃𝑧. 𝜙 𝑧 ∧ 𝑟 𝑧, 𝑦 ∈ 𝒯

• If 𝜙 ∈ 𝒯, then
¬𝜙(𝑦) ∈ 𝒯

➢If 𝜙,𝜓 ∈ 𝒯, then 
𝜙 𝑦 ∧∗ 𝜓 𝑦 ∈ 𝒯
𝜙 𝑦 ∨∗ 𝜓 𝑦 ∈ 𝒯

Note *: the existential variables in 𝜙(𝑦)
and 𝜓(𝑦) are assumed to be not 
shared.
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𝑥

𝑥′

𝑦
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TFQ vs EFO: The syntax of TFQ (5/5)
Tree-form query

Let 𝒯 be the set of all TFQs, then

• 𝑆𝑎𝑡𝑜𝑚𝑖𝑐 = {𝑟 ℎ, 𝑦 : 𝑟 ∈ ℛ, ℎ ∈ ℰ} ∈ 𝒯

ℎ is an entity, 𝑦 is a variable

• If 𝜙 ∈ 𝒯, then
¬𝜙(𝑦) ∈ 𝒯

• If 𝜙,𝜓 ∈ 𝒯, then 
𝜙 𝑦 ∧∗ 𝜓 𝑦 ∈ 𝒯
𝜙 𝑦 ∨∗ 𝜓 𝑦 ∈ 𝒯

Note*: the existential variables in 𝜙(𝑦) and 
𝜓(𝑦) are assumed to be not shared.

• If 𝜙 𝑧 ∈ 𝒯, then 
∃𝑧. 𝜙 𝑧 ∧ 𝑟 𝑧, 𝑦 ∈ 𝒯

Existential First Order (EFO) query

Let 𝒬 be the set of all EFO query, then

• 𝐹𝑎𝑡𝑜𝑚𝑖𝑐 = 𝑟 𝑡1, 𝑡2 , 𝑟 ∈ ℛ ∈ 𝒬

𝑡1 and 𝑡2 are either entities or variables.

• If 𝜙 ∈ 𝐹𝑎𝑡𝑜𝑚𝑖𝑐, then
¬𝜙(𝑦) ∈ 𝒬

• If 𝜙,𝜓 ∈ 𝒬, then 
𝜙 𝑦 ∧ 𝜓 𝑦 ∈ 𝒬
𝜙 𝑦 ∨ 𝜓 𝑦 ∈ 𝒬

Note1: the existential variables in 𝜙(𝑦) and 
𝜓(𝑦) can be shared.

• If 𝜙 ∈ 𝒬 and 𝑥 is a variable, then
∃𝑥. 𝜙 ∈ 𝒬

Note2: we can always use this rule to make sure 
there is only one free variable (non-quantified). 
This subset is also known as EFO1.

56
𝐶𝑄𝑗 𝑦; 𝑥1, … , 𝑥𝑛 = 𝑦. ∃𝑥1, … , ∃𝑥𝑛.ሥ

𝑘=1,…,𝑀𝑗

𝑎𝑗𝑘
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TFQ vs EFO: Definitions reveals more questions

• Are TFQ the same as EFO?
• If not, which one is a larger set?

• If not, are methods introduced in the previous lecture still effective for EFO?
• If not, we need more methods!
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TFQ vs EFO: Are TFQ 𝒯 the same as EFO 𝒬?

𝓣 − 𝓠 is not empty

Construction:

• 𝑟1 𝑎, 𝑦 ∈ 𝒯

• ∃𝑥. 𝑟1 𝑎, 𝑥 ∧ 𝑟2(𝑥, 𝑦) ∈ 𝒯

• ¬∃𝑥. 𝑟1 𝑎, 𝑥 ∧ 𝑟2(𝑥, 𝑦) ∈ 𝒯

• 𝜙 𝑦 = ∀𝑥.¬𝑟1 𝑎, 𝑥 ∨ ¬𝑟2 𝑥, 𝑦
𝜙 𝑦 ∈ 𝒯

• There is a universal quantifier, so it is not 
existential.

𝓠 − 𝓣 is not empty

Construction:

• 𝑟 𝑥, 𝑦 , 𝑟 𝑦, 𝑧 , 𝑟 𝑧, 𝑥 ∈ 𝒬

• 𝜙 𝑦 = ∃𝑥, 𝑧. 𝑟 𝑥, 𝑦 ∧ 𝑟 𝑦, 𝑧 ∧ 𝑟 𝑧, 𝑥
𝜙 𝑦 ∈ 𝑄

• This is a triangle but not a tree.
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TFQ vs EFO

• Fine grained characterization of the differences, refer to the paper
Yin, H., Wang, Z., & Song, Y. (2023). Rethinking Complex Queries on Knowledge Graphs 
with Neural Link Predictors. arXiv preprint arXiv:2304.07063.

https://arxiv.org/abs/2304.07063

• We need methods designed for the generic EFO query? 
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Neuro-symbolic methods for EFO 
queries
Inference

Search in the continuous space

Learning to search in the continuous space
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Methods: Fuzzy inference with truth values

Key idea

• Calculate the truth value rigorously defined with fuzzy logic.

Problem definition

• Given a link predictor 𝑓 ℎ, 𝑟, 𝑡 , we can compute the entire 
𝑀𝑞,𝑎 = 𝑇𝑉 𝑞 𝑦 = 𝑎

Comment

• Most straightforward way of computation, will be simplified later.
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Methods: Fuzzy inference with truth values

Let 𝒬 be the set of all EFO query, then

• 𝐹𝑎𝑡𝑜𝑚𝑖𝑐 = 𝑟 𝑡1, 𝑡2 , 𝑟 ∈ ℛ ∈ 𝒬

𝑡1 and 𝑡2 are either entities or variables.

• If 𝜙 ∈ 𝐹𝑎𝑡𝑜𝑚𝑖𝑐, then
¬𝜙(𝑦) ∈ 𝒬

• If 𝜙,𝜓 ∈ 𝒬, then 
𝜙 𝑦 ∧ 𝜓 𝑦 ∈ 𝒬
𝜙 𝑦 ∨ 𝜓 𝑦 ∈ 𝒬

• If 𝜙 ∈ 𝒬 and 𝑥 is a variable, then
∃𝑥. 𝜙 ∈ 𝒬

Some rules to calculate the truth value.

• If 𝜙 ∈ 𝐹𝑎𝑡𝑜𝑚𝑖𝑐, then
𝑇𝑉 𝑟 𝑎, 𝑏 = 𝑓 𝑎, 𝑟, 𝑏

• If 𝜙 ∈ 𝐹𝑎𝑡𝑜𝑚𝑖𝑐, then
𝑇𝑉 ¬𝜙 = 1 − 𝑇𝑉 𝜙

• If 𝜙,𝜓 ∈ 𝒬, then 
𝑇𝑉 𝜙 ∧ 𝜓 = 𝑇𝑉 𝜙 ⊤ 𝑇𝑉 𝜓
𝑇𝑉 𝜙 ∨ 𝜓 = 𝑇𝑉 𝜙 ⊥ 𝑇𝑉 𝜓

• If 𝜙 ∈ 𝒬 and 𝑥 is a variable, then
𝑇𝑉 ∃𝑥. 𝜙 𝑥 = ⊥𝑎∈ℰ

∗ 𝑇𝑉 𝜙 𝑥 = 𝑎

Yin, H., Wang, Z., & Song, Y. (2023). Rethinking Complex Queries on Knowledge Graphs with Neural Link Predictors. arXiv preprint arXiv:2304.07063.
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Methods: Fuzzy inference with truth values

Some rules to calculate the truth 
value.

• If 𝜙 ∈ 𝐹𝑎𝑡𝑜𝑚𝑖𝑐, then
𝑇𝑉 𝑟 𝑎, 𝑏 = 𝑓 𝑎, 𝑟, 𝑏

• If 𝜙 ∈ 𝐹𝑎𝑡𝑜𝑚𝑖𝑐, then
𝑇𝑉 ¬𝜙 = 1 − 𝑇𝑉 𝜙

• If 𝜙,𝜓 ∈ 𝒬, then 
𝑇𝑉 𝜙 ∧ 𝜓 = 𝑇𝑉 𝜙 ⊤ 𝑇𝑉 𝜓
𝑇𝑉 𝜙 ∨ 𝜓 = 𝑇𝑉 𝜙 ⊥ 𝑇𝑉 𝜓

• If 𝜙 ∈ 𝒬 and 𝑥 is a variable, then
𝑇𝑉 ∃𝑥. 𝜙 𝑥 = ⊥𝑎∈ℰ

∗ 𝑇𝑉 𝜙 𝑥 = 𝑎

• ∧ and ∨ are logical conjunction and 
disjunction, they are related to a 
paired fuzzy logic 
• 𝑡-norm ⊤ and 
• 𝑡-conorm ⊥.

• ⊥𝑎∈ℰ
∗ is also a fuzzy logic 𝑡-conorm, 

but it is used for the existential 
variable.

• Also related to the lifted inference
in probabilistic database.
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Methods: Fuzzy inference with truth values

𝜙 𝑦; 𝑥1, … , 𝑥𝑛 = ∃𝑥1, … , ∃𝑥𝑛.ሧ
𝑗=1,…,𝑁

ሥ
𝑘=1,…,𝑀𝑗

𝑎𝑗𝑘

• A question, why 𝜙 𝑦; 𝑥1, … , 𝑥𝑛 follows our inductive definition 
before?
• Because the existential quantifier and conjunction/disjunction are 

exchangeable.

• The truth value of 𝜙 𝑦 = 𝑎 is eventually

𝑇𝑉 𝜙 𝑦 = 𝑎 =⊥𝑥1=𝑒1∈ℰ
∗ … ⊥𝑥𝑛=𝑒𝑛∈ℰ

∗ ⊥𝑗=1,…,𝑁 ⊤𝑘=1,…,𝑀𝑗
𝑇𝑉 ቚ𝑎𝑗𝑘

𝑦=𝑎
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Methods: Search problem, derivation and 
formulation
• When ⊥∗ is a Godel 𝑡-conorm, the inference problem

𝑇𝑉 𝜙 𝑦 = 𝑎 =⊥𝑥1=𝑒1∈ℰ
∗ … ⊥𝑥𝑛=𝑒𝑛∈ℰ

∗ ⊥𝑗=1,…,𝑁 ⊤𝑘=1,…,𝑀𝑗
𝑇𝑉 ቚ𝑎𝑗𝑘

𝑦=𝑎

becomes an optimization problem

𝑇𝑉 𝜙 𝑦 = 𝑎 = max
𝑥1,…,𝑥𝑛∈ℰ

⊥𝑗=1,…,𝑁 ⊤𝑘=1,…,𝑀𝑗
𝑇𝑉 ቚ𝑎𝑗𝑘

𝑦=𝑎

This complexity of this search problem in general grows exponentially
with respect to the number of variables.
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Methods: Search problem, a complex 
example
An optimization problem

𝑇𝑉 𝜙 𝑦 = 𝑎 = max
𝑥1,…,𝑥𝑛∈ℰ

⊥𝑗=1,…,𝑁 ⊤𝑘=1,…,𝑀𝑗
𝑇𝑉 ቚ𝑎𝑗𝑘

𝑦=𝑎

For the case 𝜙 𝑦 = 𝑎 = ∃𝑥, 𝑧. 𝑟 𝑥, 𝑦 = 𝑎 ∧ 𝑟 𝑦 = 𝑎, 𝑧 ∧ 𝑟 𝑧, 𝑥 , we 
shall optimize

𝑇𝑉 𝜙 𝑦 = 𝑎 = max
𝑥∈ℰ,𝑧∈ℰ

𝑓 𝑥, 𝑟, 𝑎 ⊤𝑓 𝑎, 𝑟, 𝑧 ⊤𝑓(𝑧, 𝑟, 𝑥)

• Because 𝑥 and 𝑧 are dependent.
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𝑦

𝑧𝑥
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Methods: Search problem, simpler case

• For 𝜙 ∈ 𝒯 ∩ 𝒬, the search problem is drastically simplified because 
the query graph (nodes are terms and edges are atomics) is tree.

• Then one can find a topological order to remove each existential 
variable with 𝑂 ℰ 2 . Then the overall complexity is linear to the 
number of variables.

• This discussion also applies for the inference problem.
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Methods: Search in the continuous space 
(1/3)
• The search problem

𝑇𝑉 𝜙 𝑦 = 𝑎 = max
𝑥1,…,𝑥𝑛∈ℰ

⊥𝑗=1,…,𝑁 ⊤𝑘=1,…,𝑀𝑗
𝑇𝑉 ቚ𝑎𝑗𝑘

𝑦=𝑎

is defined over the discrete set ℰ.

• A continuous relaxation put 𝑥1, … , 𝑥𝑛 in the embedding space 𝒳

𝑇𝑉 𝜙 𝑦 = 𝑎 = max
𝑥1,…,𝑥𝑛∈𝒳

⊥𝑗=1,…,𝑁 ⊤𝑘=1,…,𝑀𝑗
𝑇𝑉 ቚ𝑎𝑗𝑘

𝑦=𝑎

• The optimization objective is differentiable as long as
• ⊤ and ⊥ are differentiable.

• 𝑇𝑉 ห𝑎𝑗𝑘 𝑦=𝑎
are differentiable.
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Methods: Search in the continuous space 
(2/3)

Are 𝑇𝑉 ห𝑎𝑗𝑘 𝑦=𝑎
differentiable?

• Let’s look inside

𝑇𝑉 ቚ𝑎𝑗𝑘
𝑦=𝑎

= 𝑓 ℎ, 𝑟, 𝑡

ℎ, 𝑡 are entities or variables already with assignments.

• Before, the 𝑓 ℎ, 𝑟, 𝑡 takes discrete entities as input.

• But it is eventually a link predictor. 
It is also OK to use entity embeddings
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Methods: Search in the continuous space, the 
example
• Recall the discrete search example

𝑇𝑉 𝜙 𝑦 = 𝑎 = max
𝑥∈ℰ,𝑧∈ℰ

𝑓 𝑥, 𝑟, 𝑎 ⊤𝑓 𝑎, 𝑟, 𝑧 ⊤𝑓(𝑧, 𝑟, 𝑥)

• The continuous relaxation goes with
𝑇𝑉 𝜙 𝑦 = 𝑎 ≈ max

𝑥∈𝒳,𝑧∈𝒳
𝑓 𝑥, 𝑟, 𝑎 ⊤𝑓 𝑎, 𝑟, 𝑧 ⊤𝑓(𝑧, 𝑟, 𝑥)

• This problem can be solved via gradient ascend!

70Zihao Wang, CSE, HKUST, zihao-wang.github.io



Methods: Search in the continuous space 
(3/3)
There will be ℰ problems if we evaluate 𝑇𝑉 𝜙 𝑦 = 𝑎 , 𝑎 ∈ ℰ
separately.

A simpler trick, known as Continuous Query Decomposition (CQD)
𝑇𝑉 ∃𝑦. 𝜙(𝑦) = max

𝑥1,…,𝑥𝑛∈𝒳,𝑦∈𝒳
⊥𝑗=1,…,𝑁 ⊤𝑘=1,…,𝑀𝑗

𝑇𝑉 𝑎𝑗𝑘

Then with optimal 𝑥1
∗, … , 𝑥𝑛

∗ , we just need to evaluate the objective.

𝑇𝑉 𝜙 𝑦 = 𝑎 =⊥𝑗=1,…,𝑁 ⊤𝑘=1,…,𝑀𝑗
𝑇𝑉 ቚ𝑎𝑗𝑘

𝑦=𝑎,𝑥1=𝑥1
∗ ,…,𝑥𝑛=𝑥𝑛

∗

Arakelyan, E., Daza, D., Minervini, P., & Cochez, M. (2020). Complex query answering with neural link predictors. arXiv preprint arXiv:2011.03459.
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Methods: Learning to search in the 
continuous space
Can we skip the gradient ascend?

• Before answering yes or no, let’s simplify the problem by consider the 
conjunctive queries separately.

max
𝑥1,…,𝑥𝑛∈𝒳,𝑦∈𝒳

⊤𝑘=1,…,𝑀𝑗
𝑇𝑉 𝑎𝑗𝑘

• This conjunctive queries can be considered as a query graph

• ∃𝑥. 𝑟1 𝑎, 𝑥 ∧ ¬𝑟2 𝑏, 𝑥 ∧ 𝑟3 𝑥, 𝑦

• Or max
𝑥,𝑦

𝑓 𝑎, 𝑟1, 𝑥 ⊤ 1 − 𝑓 𝑏, 𝑟2, 𝑥 ⊤𝑓 𝑥, 𝑟3, 𝑦
𝑥 𝑦

𝑎

𝑏

𝑟1

¬𝑟2

𝑟3
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Methods: Learning to search in the 
continuous space

Search

Goal: optimize the embedding of 𝑥, 𝑦

Method: gradient ascend

max
𝑥,𝑦

𝑓 𝑎, 𝑟1, 𝑥 ⊤ 1 − 𝑓 𝑏, 𝑟2, 𝑥 ⊤𝑓 𝑥, 𝑟3, 𝑦

Learning to search

Goal: estimate the embedding of 𝑥, 𝑦

• Learn the pos. emb against neg. emb.

Method: neural network forward pass

• New design problem of NN akin to the 
optimization process

𝑥 𝑦

𝑎

𝑏

𝑟1

¬𝑟2

𝑟3
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Methods: Learning to search in the 
continuous space
Instead of optimizing the global objective, we optimize the local parts 
objective in each edge (atomic formula) with closed-form solutions

• One-hop inference problems
• max

𝑥
𝑓(ℎ, 𝑟, 𝑥) ≔ 𝜌(ℎ, 𝑟, ℎ2𝑡, 0)

• max
𝑥

𝑓(𝑥, 𝑟, 𝑡) ≔ 𝜌(𝑡, 𝑟, 𝑡2ℎ, 0)

• max
𝑥

1 − 𝑓(ℎ, 𝑟, 𝑥) ≔ 𝜌(ℎ, 𝑟, ℎ2𝑡, 1)

• max
𝑥

1 − 𝑓(𝑥, 𝑟, 𝑡) ≔ 𝜌(𝑡, 𝑟, 𝑡2ℎ, 1)

• 𝜌(entity, relation, direction, negation) is a message function

• A design problem: closed-form 𝜌 for many link predictors

𝑥 𝑦

𝑎

𝑏

𝑟1

¬𝑟2

𝑟3

Wang, Z., Song, Y., Wong, G. Y., & See, S. (2023). Logical message passing networks with one-hop inference on atomic formulas. arXiv preprint arXiv:2301.08859.
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Methods: Learning to search in the 
continuous space

The desired GNN design: Logical Message Passing Neural 
Networks

• Reused GIN layer with the proper message (1 MLP to train)
• Able to approximate any functions

• Number of GIN layers = diameter of the graph

• Initialization with pretrained entity embeddings

• For variables initialized with special embeddings (2 
embeddings to train)
• One embedding for all existential variables.

• One for the free query variable

✓Then the embeddings of 𝑥, 𝑦 are estimated

𝑥 𝑦

𝑎

𝑏

𝑟1

¬𝑟2

𝑟3

𝜌(𝑎, 𝑟1, ℎ2𝑡, 0)

𝜌(𝑏, 𝑟1, ℎ2𝑡, 1)

𝜌(𝑥, 𝑟1, 𝑡2ℎ, 1)

𝜌(𝑥, 𝑟1, 𝑡2ℎ, 0) 𝜌(𝑥, 𝑟3, ℎ2𝑡, 0)

𝜌(𝑦, 𝑟3, 𝑡2ℎ, 0)

Wang, Z., Song, Y., Wong, G. Y., & See, S. (2023). Logical message passing networks with one-hop inference on atomic formulas. arXiv preprint arXiv:2301.08859.
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GNN end-to-end Training
Loss function: noisy contrastive estimation:

𝐿 = − log
𝑒cos(𝑦,𝑎)

𝑒cos 𝑦,𝑎 + ∑𝑘 𝑒
cos 𝑦,𝑒𝑘

−

The embedding of 𝑦 is estimated by GNN
Entity embeddings are pretrained.
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